On the upper-bound conjecture for convex polytopes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generalized Lower Bound Conjecture for Polytopes and Spheres

In 1971, McMullen and Walkup posed the following conjecture, which is called the generalized lower bound conjecture: If P is a simplicial d-polytope then its h-vector (h0, h1, . . . , hd) satisfies h0 ≤ h1 ≤ · · · ≤ h⌊ d2 ⌋. Moreover, if hr−1 = hr for some r ≤ d2 then P can be triangulated without introducing simplices of dimension ≤ d− r. The first part of the conjecture was solved by Stanley ...

متن کامل

A bound for Feichtinger conjecture

In this paper‎, ‎using the discrete Fourier transform in the finite-dimensional Hilbert space C^n‎, ‎a class of nonRieszable equal norm tight frames is introduced ‎and‎ using this class, a bound for Fiechtinger Conjecture is presented. By the Fiechtinger Conjecture that has been proved recently, for given A,C>0 there exists a universal constant delta>0 independent of $n$ such that every C-equal...

متن کامل

A Geometric Approach for the Upper Bound Theorem for Minkowski Sums of Convex Polytopes

We derive tight expressions for the maximum number of k-faces, 0 ≤ k ≤ d − 1, of the Minkowski sum, P1+⋯+Pr, of r convex d-polytopes P1, . . . , Pr in R, where d ≥ 2 and r < d, as a (recursively defined) function on the number of vertices of the polytopes. Our results coincide with those recently proved by Adiprasito and Sanyal [1]. In contrast to Adiprasito and Sanyal’s approach, which uses to...

متن کامل

The Lower and Upper Bound Problems for Cubical Polytopes

We construct a family of cubical polytypes which shows that the upper bound on the number of facets of a cubical polytope (given a fixed number of vertices) is higher than previously suspected. We also formulate a lower bound conjecture for cubical polytopes.

متن کامل

An Upper Bound Theorem concerning lattice polytopes

R. P. Stanley proved the Upper Bound Conjecture in 1975. We imitate his proof for the Ehrhart rings. We give some upper bounds for the volume of integrally closed lattice polytopes. We derive some inequalities for the delta-vector of integrally closed lattice polytopes. Finally we apply our results for reflexive integrally closed and order polytopes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 1971

ISSN: 0095-8956

DOI: 10.1016/0095-8956(71)90042-6